
699 

 International Journal of Academic Medicine and Pharmacy (www.academicmed.org) 
ISSN (O): 2687-5365; ISSN (P): 2753-6556 

 

 

 

 
UNDERSTANDING COMPLEX TRAIT 

HERITABILITY: THE POLYGENIC APPROACH 
 

Uma Sankar Akula1, Nagadharshan Devendra1, Kelly Manahan., John 

Geisler1 

 
1Trinity Medical Sciences University, Ratho Mill Campus, Saint Vincent and the Grenadines 

 

ABSTRACT  

Complex traits are governed by a multitude of genetic variants interacting across 

biological networks and influenced by environmental factors. This review 

explores the polygenic architecture of complex traits, emphasizing insights 

gained from genome-wide association studies (GWAS), polygenic risk scores 

(PRS), and systems genetics. It highlights the role of natural selection, 

regulatory variation, and population structure in shaping heritability patterns. 

The review also discusses emerging statistical models and omics integration 

techniques that enhance our ability to interpret polygenic signals. Finally, it 

addresses key challenges and future directions in understanding the molecular 

and evolutionary basis of complex trait heritability. 

 

 

 

 
 

 

INTRODUCTION 
 

Complex traits—such as height, intelligence, 

metabolic rate, and susceptibility to multifactorial 

conditions like type 2 diabetes, cardiovascular 

disease, and schizophrenia—are shaped by the 

interplay of numerous genetic loci and environmental 

stimuli. Unlike Mendelian disorders that result from 

single-gene mutations with large effect sizes and 

predictable inheritance patterns, complex traits 

follow a polygenic model of inheritance. In this 

model, hundreds or even thousands of genetic 

variants contribute to phenotypic variation, with each 

variant typically exerting only a small effect. These 

traits also tend to exhibit variable expressivity and 

incomplete penetrance due to modulation by 

environmental exposures, lifestyle factors, and 

epigenetic mechanisms. Over the past two decades, 

advancements in molecular genetics and statistical 

genomics have revolutionized our ability to dissect 

the genetic architecture of complex traits. The rise of 

genome-wide association studies (GWAS) has 

enabled researchers to scan the genome for 

associations between common single nucleotide 

polymorphisms (SNPs) and phenotypic variation 

across large population cohorts. These studies have 

uncovered thousands of loci associated with a broad 

spectrum of traits and diseases, supporting the notion 

of widespread polygenicity.[1] Furthermore, the 

development of polygenic risk scores (PRS) has 

introduced the potential to aggregate these small-

effect variants into a cumulative genetic liability 

score, offering a predictive framework for individual 

risk stratification. 

However, despite these technological breakthroughs, 

several important questions remain. Chief among 

these is the "missing heritability" problem—the 

observation that identified variants explain only a 

fraction of the heritability estimated from twin and 

family studies. In addition, interpreting the biological 

functions of associated SNPs remains challenging, 

especially when they reside in non-coding or 

intergenic regions. The predictive utility of PRS also 

varies across populations, highlighting the need for 

improved models that account for ancestry, gene–

environment interactions, and functional regulatory 

mechanisms.[1,2] These challenges underscore the 

complexity of trait architecture and call for more 

integrative approaches that go beyond conventional 

association mapping. 

The Concept of Polygenic Inheritance 

The concept of polygenic inheritance has its roots in 

classical quantitative genetics. Ronald Fisher, in his 

seminal 1918 paper, introduced the idea that 

continuous traits such as height could be explained 

by the additive effects of numerous genes, each 

exerting a minute influence. This "infinitesimal 

model" reconciled Mendelian inheritance with 

continuous variation observed in the population by 

positing that the combined effect of many small-

effect alleles would approximate a normal 

distribution.[1] This model laid the theoretical 

groundwork for much of modern complex trait 

genetics. 
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Empirical evidence supporting this model began to 

accumulate with the advent of GWAS, which 

provided genome-wide, hypothesis-free assessments 

of genotype–phenotype associations. The resulting 

discoveries confirmed that most complex traits are 

influenced by hundreds to thousands of variants, 

many of which fall outside traditional coding regions. 

For instance, traits such as height and body mass 

index have been linked to more than a thousand loci, 

each explaining only a small fraction of phenotypic 

variance. This diffuse pattern of effect sizes aligns 

well with Fisher’s model and reaffirms that the 

genetic architecture of complex traits is highly 

polygenic.[2] 

Moreover, the infinitesimal model has been extended 

to accommodate additional layers of complexity, 

including dominance, epistasis, gene–environment 

interactions, and pleiotropy. These extensions help 

explain not only trait variation but also evolutionary 

dynamics and the persistence of complex disease 

susceptibility alleles in the population. Together, they 

support the view that understanding complex traits 

requires integrating population genetics, molecular 

biology, and computational modeling. 

The Omnigenic Model 

While the polygenic model has been invaluable in 

advancing trait genetics, it has also raised important 

questions about the breadth of genetic involvement in 

complex traits. One such question is whether only 

genes directly involved in a trait’s biological pathway 

are relevant, or whether a much larger set of genes 

may contribute indirectly. The omnigenic model, 

introduced by Boyle, Li, and Pritchard in 2017, 

addresses this by proposing that essentially all genes 

expressed in trait-relevant cells could influence 

complex traits through regulatory networks.[3] 

According to the omnigenic hypothesis, core genes 

are those directly involved in biological processes 

governing the trait, while peripheral genes exert 

indirect effects by influencing the expression or 

function of these core genes through regulatory 

pathways. Because gene regulatory networks are 

dense and interconnected, perturbations in even 

distant loci can propagate effects across the network, 

thereby affecting core processes. This model 

provides a mechanistic explanation for why GWAS 

often implicate regions far from canonical genes, and 

why even genes with no obvious functional 

relationship to the trait of interest may still influence 

its expression. 

The implications of the omnigenic model are 

profound. It suggests that heritability is not only 

widely dispersed but also deeply embedded within 

the architecture of cellular networks. This adds 

another layer of complexity to efforts aimed at 

pinpointing causal variants and developing precision 

medicine tools. Furthermore, it emphasizes the need 

for integrating GWAS with transcriptomic, 

epigenomic, and proteomic data to better map gene 

regulatory landscapes and their phenotypic 

consequences. In doing so, the omnigenic model 

reframes our understanding of genetic causality from 

a linear to a network-based perspective, highlighting 

the interconnectedness of the genome in shaping 

complex traits. 

 

 
Figure 1: The Omnigenic Model 

 

GWAS and the Discovery of Trait-Associated Loci 

Over the past decade, genome-wide association 

studies (GWAS) have emerged as a cornerstone in 

uncovering the genetic underpinnings of complex 

traits. These studies scan the genomes of large 

populations to identify associations between single 

nucleotide polymorphisms (SNPs) and phenotypic 

variation, often without any prior hypothesis. To 

date, GWAS have identified thousands of loci linked 

to a wide variety of traits and diseases, including 

schizophrenia, type 2 diabetes, coronary artery 

disease, and educational attainment.[2] These findings 

have significantly expanded our catalog of genetic 

associations and reinforced the concept of 

polygenicity. 

One striking observation from GWAS is the wide 

genomic dispersion of trait-associated loci. Many of 

these loci are found in non-coding regions, 

suggesting roles in gene regulation rather than direct 

protein alteration. Despite the large number of SNPs 

identified, each typically accounts for a minuscule 

portion of the phenotypic variance, often less than 

0.1%. Collectively, even hundreds of these SNPs 

may explain only a fraction of the total heritability 

estimated through family or twin studies—a 

discrepancy known as the “missing heritability” 

problem.[4] 

Several explanations have been proposed for this gap. 

First, GWAS primarily detect common variants and 

are underpowered to identify rare variants of 

potentially larger effect. Second, gene–gene 

(epistatic) and gene–environment interactions are not 

well captured in traditional GWAS frameworks. 

Third, structural variants, epigenetic modifications, 

and somatic mutations remain underexplored. 
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Consequently, while GWAS have been invaluable in 

mapping genetic architecture, they represent just one 

layer in the broader effort to understand complex trait 

heritability. 

Polygenic Scores and Predictive Modeling 

To address the highly polygenic nature of complex 

traits, researchers have developed polygenic scores—

also referred to as polygenic risk scores (PRS)—as a 

means to quantify an individual’s genetic 

predisposition. These scores are calculated by 

summing the effects of numerous SNPs, each 

weighted by its effect size derived from GWAS 

summary statistics.[5] PRS provide a continuous 

measure of genetic liability and are increasingly used 

in risk stratification, early screening, and 

personalized prevention strategies, especially in 

diseases like cardiovascular disorders, breast cancer, 

and psychiatric conditions. Despite their promise, the 

utility of PRS is constrained by several limitations. 

First, their predictive power is modest for most traits, 

with the exception of highly heritable and well-

studied conditions. Second, PRS derived from 

GWAS conducted in European ancestry populations 

often perform poorly in non-European populations, 

due to differences in allele frequencies, linkage 

disequilibrium patterns, and population structure.[5,6] 

This raises concerns about the equity and 

generalizability of PRS-based clinical tools, 

especially in globally diverse populations. 

Furthermore, PRS do not account for environmental 

exposures, lifestyle, or epigenetic modifications—

factors that significantly modulate disease risk. There 

are also conceptual concerns about their 

interpretation: a high polygenic score reflects 

statistical association, not deterministic causality. To 

enhance their clinical relevance, ongoing research is 

focused on integrating PRS with additional data 

layers such as family history, environmental risk 

factors, and biomarkers. Multivariate and machine 

learning-based models are also being explored to 

better leverage the complex interdependencies 

among genetic predictors. 

Role of Natural Selection in Polygenicity 

While GWAS and PRS highlight the extensive spread 

of genetic contributions to complex traits, an 

important evolutionary question arises: why do so 

many small-effect variants persist in the population? 

One compelling explanation lies in the role of natural 

selection. O'Connor et al. argue that extreme 

polygenicity arises, in part, from the action of 

negative selection, which limits the frequency and 

effect size of deleterious alleles that influence fitness-

related traits.[7] This results in a genetic architecture 

where many small-effect variants, rather than a few 

large-effect ones, contribute to phenotypic diversity. 

Negative selection tends to purge harmful alleles with 

large effects from the gene pool, especially if they 

influence traits that impact reproductive success or 

survival. However, variants with smaller effects can 

persist, accumulate, and collectively shape complex 

traits. This evolutionary constraint explains why 

GWAS often fail to detect high-effect loci for 

common diseases, despite extensive sample sizes. 

Instead, the architecture appears “flattened,” with 

many loci contributing modestly to trait variance, 

making detection and prediction statistically 

challenging. 

Moreover, traits that are tightly linked to 

evolutionary fitness, such as cognitive ability or 

reproductive timing, may exhibit higher degrees of 

polygenicity due to stronger purifying selection. This 

has implications not only for understanding trait 

biology but also for interpreting GWAS signals and 

refining models of heritability. It also underscores the 

importance of considering evolutionary dynamics 

when designing studies and interpreting the 

distribution of effect sizes across the genome. 

Functional Interpretation of GWAS Hits 

Despite the statistical success of GWAS in 

identifying thousands of trait-associated loci, the 

functional interpretation of these associations 

remains a major bottleneck in complex trait genetics. 

A notable proportion of significant SNPs from 

GWAS are found in non-coding regions of the 

genome, including intergenic areas, introns, and 

untranslated regions. These findings suggest that 

many GWAS signals likely exert their effects by 

modulating gene expression or chromatin state, rather 

than through direct changes to protein structure or 

function.[10] 

To elucidate these regulatory mechanisms, 

researchers have increasingly relied on integrative 

functional genomics approaches. Expression 

quantitative trait loci (eQTL) mapping helps connect 

non-coding variants to downstream gene expression 

changes, while chromatin accessibility assays such as 

ATAC-seq and DNase-seq identify active regulatory 

elements in specific tissues or developmental 

contexts. These data sources, in combination with 

transcriptomic and proteomic profiles, allow for the 

prioritization of candidate genes and the construction 

of regulatory pathways linked to disease.[11] 

Moreover, functional annotation tools and machine 

learning algorithms are being developed to predict 

the impact of non-coding variants based on sequence 

features and epigenomic signals. While these 

methods have improved our capacity to interpret 

GWAS findings, significant challenges remain. 

Tissue specificity, context-dependence, and cell-type 

heterogeneity all complicate the extrapolation of 

functional data to organism-level phenotypes. 

Bridging this gap will require deeper integration of 

multi-omics datasets and high-throughput 

experimental validation strategies. 

Molecular Architecture and Regulatory Networks 

The complexity of trait heritability extends beyond 

individual genes and variants to the broader 

molecular and regulatory architecture of the genome. 

Traits are not controlled by isolated genes but by 

dynamic networks of interacting transcripts, proteins, 

and regulatory elements. Gene expression is 

regulated by promoters, enhancers, transcription 

factors, non-coding RNAs, and chromatin-modifying 

enzymes—all of which can be influenced by genetic 
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variation. These interactions form intricate molecular 

networks that underlie phenotypic expression and 

contribute to the variability observed in complex 

traits.[12] 

Lappalainen et al. have emphasized the importance of 

integrating multiple layers of molecular data to 

understand how genetic variation translates into 

phenotypic outcomes. For example, a single SNP 

might not directly cause a disease phenotype but may 

alter the expression of a transcription factor that 

controls an entire cascade of downstream genes. 

Understanding these intermediary steps is essential 

for decoding the full chain of causality between 

genotype and phenotype. Furthermore, different 

tissues may exhibit distinct regulatory landscapes, 

adding another dimension of complexity when 

linking genetic variation to disease processes. 

Advances in high-throughput technologies, such as 

single-cell RNA sequencing and CRISPR-based 

perturbation assays, are now making it possible to 

systematically map these regulatory networks at 

unprecedented resolution. By integrating data from 

transcriptomics, epigenomics, proteomics, and 

spatial genomics, researchers can construct detailed 

models of gene regulation that reveal how multiple 

molecular mechanisms converge to influence 

complex traits. This systems-level understanding is 

not only critical for basic science but also for the 

development of more targeted and effective 

therapeutic strategies. 

 

 
Figure 2: Molecular Architecture and Regulatory 

Networks 

 

Statistical Models and Linear Mixed Approaches 

As the field of complex trait genetics has evolved, so 

too have the statistical models used to interpret high-

dimensional genomic data. Linear mixed models 

(LMMs) have become indispensable in GWAS for 

their ability to account for both population structure 

and polygenic background.[13] Unlike traditional 

linear regression models, LMMs incorporate a 

random effects component to capture the additive 

effects of genome-wide SNPs. This helps prevent 

false positives due to cryptic relatedness or ancestry 

stratification and yields more accurate estimates of 

SNP-based heritability. 

LMMs have proven especially useful in large, 

ethnically diverse cohorts where uncorrected 

stratification could otherwise confound results. 

Moreover, their flexibility enables application to a 

wide variety of study designs, including case-control 

studies, longitudinal datasets, and repeated measures. 

Recent innovations include Bayesian mixed models, 

sparse LMMs, and models tailored for binary or time-

to-event outcomes—each designed to improve 

scalability, interpretability, or computational 

efficiency. 

Beyond GWAS, LMMs are now being extended to 

multi-omics contexts, integrating transcriptomic, 

proteomic, and epigenomic data to model how 

genetic variants influence downstream molecular 

phenotypes. This expansion allows for more precise 

trait mapping and improved causal inference. 

Similarly, LMMs are increasingly used in gene–

environment interaction studies and for partitioning 

heritability across functional annotations or genomic 

regions, enabling a deeper understanding of the 

biological pathways involved in complex traits. 

Systems Genetics and Integrative Omics 

While single-variant analyses remain a mainstay in 

genetic studies, they are insufficient to fully capture 

the multifaceted nature of complex trait architecture. 

Systems genetics has emerged as a powerful 

framework that integrates various layers of omics 

data—including genomics, transcriptomics, 

epigenomics, metabolomics, and proteomics—

within a network-based model.[14] The central tenet is 

that phenotypes arise not from isolated genes, but 

from the coordinated function of gene networks and 

molecular pathways influenced by both genetic and 

environmental variation. 

Systems genetics enables the identification of key 

regulatory nodes, such as transcription factors or hub 

genes, that mediate the effects of genetic variants on 

downstream biological processes. These regulators 

are often the most biologically informative and the 

most promising targets for therapeutic intervention. 

For example, genetic variants may affect transcript 

levels in one tissue, leading to altered protein levels, 

cellular phenotypes, and eventually clinical 

manifestations. Mapping these cascades can uncover 

causal pathways and refine the interpretation of 

GWAS signals. 

Multi-omics integration is further enhanced by 

computational tools such as co-expression network 

analysis, causal inference testing, and machine 

learning algorithms that model high-order 

interactions. The application of these methods has led 

to the discovery of trans-eQTLs, condition-specific 

regulatory effects, and multi-trait genetic 

correlations. Systems genetics not only deepens our 

understanding of complex trait biology but also holds 
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promise for biomarker discovery, drug repurposing, 

and personalized medicine. 

Population Structure and Bottleneck Effects 

Understanding the influence of population history is 

essential in interpreting genetic association studies. 

Populations that have experienced demographic 

events such as bottlenecks, founder effects, or rapid 

population expansion can show altered patterns of 

allele frequency, linkage disequilibrium (LD), and 

genetic diversity. These factors affect both the power 

and accuracy of GWAS and polygenic risk score 

(PRS) models.[6] 

In bottlenecked populations—such as the Finnish or 

Ashkenazi Jewish cohorts—alleles that are rare in the 

general population may reach higher frequencies, 

facilitating the discovery of trait-associated loci. 

However, the same demographic forces can also 

skew LD structure, complicating fine-mapping and 

replication efforts in other populations. Moreover, 

PRS derived from one population often show 

diminished predictive accuracy when applied to 

genetically distant groups, underscoring the need for 

more diverse and representative GWAS datasets. 

To address these issues, researchers have begun 

incorporating demographic models and local 

ancestry inference into statistical pipelines. 

Additionally, efforts like the H3Africa project and 

the Global Biobank Meta-analysis Initiative are 

expanding the ancestral diversity of genomic 

databases. This is not only ethically important for 

equitable healthcare but also scientifically necessary 

to ensure that findings are generalizable and that 

genetic discoveries reflect the full spectrum of human 

diversity. 

 

 
Figure 3: Population Structure and Bottleneck Effects 

 

Future Directions and Open Challenges 

Despite significant advances in uncovering the 

genetic basis of complex traits, numerous challenges 

remain that will shape the next phase of genomic 

research. One of the foremost challenges is the 

limited interpretability of polygenic risk scores. 

While PRS offer population-level risk stratification, 

their predictive power varies across traits and 

populations, and they often lack clinical utility on an 

individual level.[15] Enhancing PRS performance will 

require integrating environmental factors, rare 

variants, and multi-omic data into composite risk 

models. 

Another major hurdle is fine-mapping causal variants 

among the vast sea of statistically associated SNPs. 

Improved resolution requires larger sample sizes, 

better functional annotations, and tissue- or cell-

type–specific regulatory maps. This is especially 

crucial as most GWAS loci reside in non-coding 

regions, making biological inference difficult without 

additional functional data. 

The integration of the omnigenic model further 

complicates interpretation by suggesting that 

peripheral genes—previously considered 

irrelevant—may significantly influence core 

biological processes through network effects.[16] This 

reframes heritability as a distributed property of gene 

regulatory networks rather than a function of a small 

set of trait-specific genes. Additionally, emerging 

evidence on gene–environment interactions, 

epigenetic memory, and microbiome-host dynamics 

point to a more layered and dynamic view of 

heritability.[17] 

 

CONCLUSION 
 

The polygenic framework has significantly deepened 

our understanding of complex trait heritability, 

revealing that numerous small-effect variants 

contribute to phenotypic variation across the genome. 

With advances in GWAS, polygenic risk scoring, and 

multi-omics integration, researchers are beginning to 

unravel the regulatory networks underlying trait 

expression. However, challenges such as missing 

heritability, population bias, and pleiotropy persist. 

Future research must incorporate functional 

genomics, evolutionary theory, and diverse 

populations to enhance predictive power and 

biological interpretation. A systems-level approach 

will be key to translating genetic discoveries into 

clinical and public health applications. 
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